Abstract

LiCoO2, as a domain cathode material of Li-ion batteries, faces a great deal of challenges due to the limited cycling stability at high voltage (>4.35 V vs. Li/Li+). These issues are tentatively addressed here by a multifunctional self-stabilization modification strategy, involving trace Mg bulk doping, surface gradient Ti doping and BaTiO3 dot coating in LiCoO2. The multifunctional synergy is verified to overcome the detrimental irreversible phase transition and the growth of impedance of LiCoO2 cycling at 4.6 V. By using soft X-ray absorption spectroscopy (sXAS) and electron paramagnetic resonance (EPR) techniques, we also elucidate that Ti surface gradient doping can reinforce the structure rigidity of the particles while significantly attenuates the irreversible oxygen redox at high voltage. All these strategies promote the prolonged cyclic performance of LiCoO2 under 4.6 V high-voltage through different mechanism. This elaborate investigation provides an instructive contribution in the advancement of high-voltage LiCoO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.