Abstract

AbstractBy attaching a bulky, inductively electron‐withdrawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2‐[3‐ (N‐phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange‐emitting phosphorescent iridium(III) complex [Ir(L1)2(acac)] 1 (HL1 = 5‐trifluoromethyl‐2‐[3‐(N‐phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield. The structural and electronic properties of 1 were examined by X‐ray crystallography and time‐dependent DFT calculations. The influence of CF3 substituents on the optical, electrochemical and electroluminescence (EL) properties of 1 were studied. We note that incorporation of the carbazolyl unit facilitates the hole‐transporting ability of the complex, and more importantly, attachment of CF3 group provides an access to a highly efficient electrophosphor for the fabrication of orange phosphorescent organic light‐emitting diodes (OLEDs) with outstanding device performance. These orange OLEDs can produce a maximum current efficiency of ∼40 cd A−1, corresponding to an external quantum efficiency of ∼12% ph/el (photons per electron) and a power efficiency of ∼24 lm W−1. Remarkably, high‐performance simple two‐element white OLEDs (WOLEDs) with excellent color stability can be fabricated using an orange triplet‐harvesting emitter 1 in conjunction with a blue singlet‐harvesting emitter. By using such a new system where the host singlet is resonant with the blue fluorophore singlet state and the host triplet is resonant with the orange phosphor triplet level, this white light‐emitting structure can achieve peak EL efficiencies of 26.6 cd A−1 and 13.5 lm W−1 that are generally superior to other two‐element all‐fluorophore or all‐phosphor OLED counterparts in terms of both color stability and emission efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.