Abstract
The cystic fibrosis gene product (CFTR) is a complex protein that functions as an adenosine 3,5-monophosphate (cAMP)-stimulated ion channel and possibly as a regulator of intracellular processes. In order to determine whether the CFTR molecule contains a functional aqueous pathway, anion, water, and urea transport were measured in Xenopus oocytes expressing CFTR. Cyclic AMP agonists induced a Cl- conductance of 94 microsiemens and an increase in water permeability of 4 x 10(-4) centimeter per second that was inhibited by a Cl- channel blocker and was dependent on anion composition. CFTR has a calculated single channel water conductance of 9 x 10(-13) cubic centimeter per second, suggesting a pore-like aqueous pathway. Oocytes expressing CFTR also showed cAMP-stimulated transport of urea but not the larger solute sucrose. Thus CFTR contains a cAMP-stimulated aqueous pore that can transport anions, water, and small solutes. The results also provide functional evidence for water movement through an ion channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.