Abstract
The main idea of multi-frame super-resolution (SR) algorithm is to recover a single high-resolution (HR) image from a sequence of low resolution ones of the same scene. Since the restoration step of super-resolution algorithms is always an ill-posed problem, the choice of the fidelity term and the regularization are always crucial. In this paper, we propose a new variational SR framework based on an automatic selection of the weighting parameter that control the balance between the L1 and L2 fidelity terms, which handle different type of noise distributions. Concerning the regularization, we use the combined total variation (TV) and the total variation of the first derivatives (TV2) model with a new implementation of the Primal-dual algorithm to solve the corresponding discretized problem. The obtained results are compared with some competitive algorithms and confirm that the proposed method has much benefices over the others in avoiding some undesirable artifacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.