Abstract

Modeling of reactive dispersed flows with interfacial mass transfer limitations require an accurate description of the interfacial area, mass transfer coefficient and the driving force. The driving force is given by the difference in species composition between the continuous and dispersed phases and thus depends on bubble size. This paper shows the extension of the multifluid-PBE model to reactive and non-isothermal flows with novel transport equations for species mass and temperature which are continuous functions of bubble size. The model is demonstrated by simulating the Fischer-Tropsch synthesis operated in a slurry bubble column at industrial conditions. The simulation results show different composition and velocity for the smallest and largest bubbles. The temperature profile was independent of bubble size due to efficient heat exchange. The proposed model is particularly useful in investigating the effects of bubble size on strongly mass transfer limited processes operated in the heterogeneous flow regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call