Abstract

Ionic electrodiffusion and osmotic water flow are central processes in many physiological systems. We formulate a system of partial differential equations that governs ion movement and water flow in biological tissue. A salient feature of this model is that it satisfies a free energy identity, ensuring the thermodynamic consistency of the model. A numerical scheme is developed for the model in one spatial dimension and is applied to a model of cortical spreading depression, a propagating breakdown of ionic and cell volume homeostasis in the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.