Abstract

Diabetes retinopathy (DR) is one of the leading causes of blindness globally. Early detection of this condition is essential for preventing patients' loss of eyesight caused by diabetes mellitus being untreated for an extended period. This paper proposes the design of an augmented bioinspired multidomain feature extraction and selection model for diabetic retinopathy severity estimation using an ensemble learning process. The proposed approach initiates by identifying DR severity levels from retinal images that segment the optical disc, macula, blood vessels, exudates, and hemorrhages using an adaptive thresholding process. Once the images are segmented, multidomain features are extracted from the retinal images, including frequency, entropy, cosine, gabor, and wavelet components. These data were fed into a novel Modified Moth Flame Optimization-based feature selection method that assisted in optimal feature selection. Finally, an ensemble model using various ML (machine learning) algorithms, which included Naive Bayes, K-Nearest Neighbours, Support Vector Machine, Multilayer Perceptron, Random Forests, and Logistic Regression were used to identify the various severity complications of DR. The experiments on different openly accessible data sources have shown that the proposed method outperformed conventional methods and achieved an Accuracy of 96.5% in identifying DR severity levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.