Abstract

The abundant dinosaurian tracksites of the Lower Cretaceous (Valanginian–Barremian) Broome Sandstone of the Dampier Peninsula, Western Australia, form an important part of the West Kimberley National Heritage Place. Previous attempts to document these tracksites using traditional mapping techniques (e.g., surface overlays, transects and gridlines combined with conventional photography) have been hindered by the non-trivial challenges associated with working in this area, including, but not limited to: (1) the remoteness of many of the tracksites; (2) the occurrence of the majority of the tracksites in the intertidal zone; (3) the size and complexity of many of the tracksites, with some extending over several square kilometres. Using the historically significant and well-known dinosaurian tracksites at Minyirr (Gantheaume Point), we show how these issues can be overcome through the use of an integrated array of remote sensing tools. A combination of high-resolution aerial photography with both manned and unmanned aircraft, airborne and handheld high-resolution lidar imaging and handheld photography enabled the collection of large amounts of digital data from which 3D models of the tracksites at varying resolutions were constructed. The acquired data encompasses a very broad scale, from the sub-millimetre level that details individual tracks, to the multiple-kilometre level, which encompasses discontinuous tracksite exposures and large swathes of coastline. The former are useful for detailed ichnological work, while the latter are being employed to better understand the stratigraphic and temporal relationship between tracksites in a broader geological and palaeoecological context. These approaches and the data they can generate now provide a means through which digital conservation and temporal monitoring of the Dampier Peninsula’s dinosaurian tracksites can occur. As plans for the on-going management of the tracks in this area progress, analysis of the 3D data and 3D visualization will also likely provide an important means through which the broader public can experience these spectacular National Heritage listed landscapes.

Highlights

  • Fossil tracks provide direct insight into the diversity, abundance, distribution and behaviour of extinct trace-makers

  • To highlight the outcomes of the data acquisition techniques for small-scale level-of-detail we have focused on the DP56 trackbearing platform that preserves many theropod tracks (DP56-4, −5 and −9; Figs. 3E–3F) that together comprise at least thirteen tracks

  • High-resolution digital data of DP56 were acquired from each surface-based method (Table 1)

Read more

Summary

Introduction

Fossil tracks provide direct insight into the diversity, abundance, distribution and behaviour of extinct trace-makers. The traditional technique of documenting dinosaurian tracks and tracksites has been largely restricted to acquiring data in two dimensions. Large-scale data acquisition has been attempted at some dinosaurian tracksites in Catalonia, Spain (Bates et al, 2008), and the Rocky Mountains, USA (Breithaupt, Matthews & Noble, 2004), very large tracksites can suffer from poor documentation of individual tracks (Thulborn, Hamley & Foulkes, 1994). Often this is despite such sites having enormous potential for ichnotaxonomic investigations or insights into ichnofaunal composition and trackmaker behaviour and palaeoecology

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.