Abstract

AbstractMechanical twinning changes atomic, molecular, and crystal orientations along with directions of the anisotropic properties of the crystalline materials while maintaining single crystallinity in each domain. However, such deformability has been less studied in brittle organic crystals despite their remarkable anisotropic functions. Herein we demonstrate a direction‐dependent mechanical twinning that shows superelasticity in one direction and ferroelasticity in two other directions in a single crystal of 1,3‐bis(4‐methoxyphenyl)urea. The crystal can undergo stepwise twinning and ferroelastically forms various shapes with multiple domains oriented in different directions, thereby affording a crystal that shows superelasticity in multiple directions. This adaptability and shape recoverability in a ferroelastic and superelastic single crystal under ambient conditions are of great importance in future applications of organic crystals as mechanical materials, such as in soft robotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.