Abstract

The kinds of individual differences in perceptions permitted by the weighted euclidean model for multidimensional scaling (e.g., INDSCAL) are much more restricted than those allowed by Tucker's Three-mode Multidimensional Scaling (TMMDS) model or Carroll's Idiosyncratic Scaling (IDIOSCAL) model. Although, in some situations the more general models would seem desirable, investigators have been reluctant to use them because they are subject to transformational indeterminacies which complicate interpretation. In this article, we show how these indeterminacies can be removed by constructing specific models of the phenomenon under investigation. As an example of this approach, a model of the size-weight illusion is developed and applied to data from two experiments, with highly meaningful results. The same data are also analyzed using INDSCAL. Of the two solutions, only the one obtained by using the size-weight model allows examination of individual differences in the strength of the illusion; INDSCAL can not represent such differences. In this sample, however, individual differences in illusion strength turn out to be minor. Hence the INDSCAL solution, while less informative than the size-weight solution, is nonetheless easily interpretable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call