Abstract

This paper is concerned with the analysis of a sixth-order nonlinear parabolic equation whose solutions describe the evolution of the particle density in a quantum fluid. We prove the global-in-time existence of weak nonnegative solutions in two and three space dimensions under periodic boundary conditions. Moreover, we show that these solutions are smooth and classical whenever the particle density is strictly positive, and we prove the long-time convergence to the spatial homogeneous equilibrium at a universal exponential rate. Our analysis strongly uses the Lyapunov property of the entropy functional.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.