Abstract

The paper describes and studies an iterative algorithm for finding of a set of linear forms over vectors of integers. The algorithm small values of a set of linear forms over vectors of integers. The algorithm uses a linear recurrence relation to generate a vector sequence, the basic idea being to choose the integral coefficients in the recurrence relation in such a way that the linear forms take small values, subject to the requirement that the integers should not become too large. The problem of choosing good coefficients for the recurrence relation is thus related to the problem of finding a good approximation of a given vector by a vector in a certain one-parameter family of lattices; the novel feature of our approach is that practical formulae for the coefficients are obtained by considering the limit as the parameter tends to zero. The paper discusses two procedures to solve the underlying inhomogeneous Diophantine approximation problem: the first, which we call naive rounding leads to a multidimensional continued fraction algorithm with suboptimal asymptotic convergence properties; in particular, when it is applied to the familiar problem of simultaneous rational approximation, the algorithm reduces to the classical Jacobi-Perron algorithm. The second procedure is Babai's nearest-plane procedure. We compare the two procedures numerically; our experiments suggest that the multidimensional continued fraction corresponding to nearest-plane converges at an optimal asymptotic rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.