Abstract

Missense mutations of human choline acetyltransferase (CHAT) are mainly associated with congenital myasthenic syndrome (CMS). To date, several pathogenic mutations have been reported, but due to the rarity and genetic complexity of CMS and difficult genotype-phenotype correlations, the CHAT mutations, and their consequences are underexplored. In this study, we systematically sift through the available genetic data in search of previously unreported pathogenic mutations and use a dynamic in silico model to provide structural explanations for the pathogenicity of the reported deleterious and undetermined variants. Through rigorous multiparameter analyses, we conclude that mutations can affect CHAT through a variety of different mechanisms: by disrupting the secondary structure, by perturbing the P-loop through long-range allosteric interactions, by disrupting the domain connecting loop, and by affecting the phosphorylation process. This study provides the first dynamic look at how mutations affect the structure and catalytic activity in CHAT and highlights the need for further genomic research to better understand the pathology of CHAT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.