Abstract

Large amounts of gaseous emissions are generated by combustion processes associated with the utility systems. The emissions include SO x , CO 2, CO, NO x , CH 4, and N 2O. Such emissions can result in significant impact on the surrounding environment. As a result of serious concerns about environmental problems in recent years, the design criteria for a modern utility system should include both environmental and economic requirements. This work proposes a multi-objective optimisation (MOO) strategy to identify the sustainable design of utility systems that satisfies both economic and environmental goals. A MOO mixed integer linear programming (MILP) model is developed to combine the minimisation of costs with the minimisation of environmental impact that is assessed in terms of life cycle environmental burdens. Most of the gaseous emissions are addressed in the model. The resulting MOO problem is solved using lexicographic goal programming (LGP) techniques. The new strategy has been applied to a case study for the design of a utility system with specific utility demands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.