Abstract

A model is presented for the electrostatic component of solvatochromic shifts in vertical electronic excitation energies. The model, which makes use of the mean-field approximation, combines quantum mechanics (QM) in the description of the solute molecule and molecular mechanics (MM) in the description of the solvent. The method is implemented at the multiconfigurational self-consistent field level. We present illustrative applications to the (n→π*)1 transitions of formaldehyde, acetaldehyde, and acetone in liquid water. The solvent shifts obtained compare well with other ab initio QM/MM calculations and when the electron correlation components are included with the experimental solvent shift, but differ from the results obtained with semiempirical QM/MM and continuum models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.