Abstract

This paper presents a noncompensatory latent trait model, the multicomponent latent trait model for diagnosis (MLTM-D), for cognitive diagnosis. In MLTM-D, a hierarchical relationship between components and attributes is specified to be applicable to permit diagnosis at two levels. MLTM-D is a generalization of the multicomponent latent trait model (MLTM; Whitely in Psychometrika, 45:479-494, 1980; Embretson in Psychometrika, 49:175-186, 1984) to be applicable to measures of broad traits, such as achievement tests, in which component structure varies between items. Conditions for model identification are described and marginal maximum likelihood estimators are presented, along with simulation data to demonstrate parameter recovery. To illustrate how MLTM-D can be used for diagnosis, an application to a large-scale test of mathematics achievement is presented. An advantage of MLTM-D for diagnosis is that it may be more applicable to large-scale assessments with more heterogeneous items than are latent class models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.