Abstract
Fingerprint classification is a challenging pattern recognition problem which plays a fundamental role in most of the large fingerprint-based identification systems. Due to the intrinsic class ambiguity and the difficulty of processing very low quality images (which constitute a significant proportion), automatic fingerprint classification performance is currently below operating requirements, and most of the classification work is still carried out manually or semi-automatically. This paper explores the advantages of combining the MASKS and MKL-based classifiers, which we have specifically designed for the fingerprint classification task. In particular, a combination at the ‘abstract level’ is proposed for exclusive classification, whereas a fusion at the ‘measurement level’ is introduced for continuous classification. The advantages of coupling these distinct techniques are well evident; in particular, in the case of exclusive classification, the FBI challenge, requiring a classification error ≤ 1% at 20% rejection, was met on NIST-DB14.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.