Abstract

Sentiment analysis of social media texts has become a research hotspot in information processing. Sentiment analysis methods based on the combination of machine learning and sentiment lexicon need to select features. Selected emotional features are often subjective, which can easily lead to overfitted models and poor generalization ability. Sentiment analysis models based on deep learning can automatically extract effective text emotional features, which will greatly improve the accuracy of text sentiment analysis. However, due to the lack of a multi-classification emotional corpus, it cannot accurately express the emotional polarity. Therefore, we propose a multi-classification sentiment analysis model, GLU-RCNN, based on Gated Linear Units and attention mechanism. Our model uses the Gated Linear Units based attention mechanism to integrate the local features extracted by CNN with the semantic features extracted by the LSTM. The local features of short text are extracted and concatenated by using multi-size convolution kernels. At the classification layer, the emotional features extracted by CNN and LSTM are respectively concatenated to express the emotional features of the text. The detailed evaluation on two benchmark datasets shows that the proposed model outperforms state-of-the-art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.