Abstract
A major challenge in the application of state-of-the-art deep learning methods to the classification of mobile lidar data is the lack of sufficient training samples for different object categories. The transfer learning technique based on pre-trained networks, which is widely used in deep learning for image classification, is not directly applicable to point clouds, because pre-trained networks trained by a large number of samples from multiple sources are not available. To solve this problem, we design a framework incorporating a state-of-the-art deep learning network, i.e. VoxNet, and propose an extended Multiclass TrAdaBoost algorithm, which can be trained with complementary training samples from other source datasets to improve the classification accuracy in the target domain. In this framework, we first train the VoxNet model with the combined dataset and extract the feature vectors from the fully connected layer, and then use these to train the Multiclass TrAdaBoost. Experimental results show that the proposed method achieves both improvement in the overall accuracy and a more balanced performance in each category.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.