Abstract

In-vehicle communications are emerging to play an important role in the continued development of reliable and efficient X-by-Wire applications in new vehicles. Since vehicle devices, sensors, and the electronic control unit (ECU) are already connected to power wires, the advancement of power line communications (PLCs) can provide a very low cost and virtually free platform for in-vehicle communications. In this paper, we propose a medium access control (MAC) protocol for vehicular PLC systems, where multiple nodes are competing for transmission over the direct current (dc) power line. The proposed protocol uses a combination of time and frequency multiplexing and consists of two key features: 1) a distributed channel selection policy to arbitrate packet transmission across different channels and provide robustness against interference and noise and 2) a distributed collision resolution algorithm to allow efficient nodes completion over selected channels. Specifically, the collision resolution algorithm is optimized with respect to the channel policy such that the success probability of transmission in each channel is maximized. Numerical results are also supplemented to validate the performance of the proposed protocol and provide useful guidelines for developing a robust contention-based MAC protocol for vehicular PLC systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.