Abstract

Abstract The effectiveness of the ensemble Kalman filter (EnKF) for assimilating radar observations at convective scales is investigated for cases whose behaviors span supercellular, linear, and multicellular organization. The parallel EnKF algorithm of the Data Assimilation Research Testbed (DART) is used for data assimilation, while the Weather Research and Forecasting (WRF) Model is employed as a simplified cloud model at 2-km horizontal grid spacing. In each case, reflectivity and radial velocity measurements are utilized from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) within the U.S. operational network. Observations are assimilated every 2 min for a duration of 60 min and correction of folded radial velocities occurs within the EnKF. Initial ensemble uncertainty includes random perturbations to the horizontal wind components of the initial environmental sounding. The EnKF performs effectively and with robust results across all the cases. Over the first 18–30 min of assimilation, the rms and domain-averaged prior fits to observations in each case improve significantly from their initial levels, reaching comparable values of 3–6 m s−1 and 7–10 dBZ. Representation of mesoscale uncertainty, albeit in the simplest form of initial sounding perturbations, is a critical part of the assimilation system, as it increases ensemble spread and improves filter performance. In addition, assimilation of “no precipitation” observations (i.e., reflectivity observations with values small enough to indicate the absence of precipitation) serves to suppress spurious convection in ensemble members. At the same time, it is clear that the assimilation is far from optimal, as the ensemble spread is consistently smaller than what would be expected from the innovation statistics and the assumed observation-error variance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.