Abstract

This paper proposes the use of the multibody approach to evaluate the severity of the injuries to the driver associated with rollover of an agricultural tractor. A simple rollover accident of a narrow-track wheeled tractor was simulated in the multibody-FEM Madymo environment and the biomechanical damage to the operator with and without 2-point pelvic restraint was analysed. The structure of the tractor was considered to be unbendable, whereas i) infinitely rigid, ii) clay-based and iii) sand-based soils have been studied. The obtained results highlight the important role played by the seat belt in confining the farm operator within the safety volume maintained by the rollover protective structure (ROPS) of the tractor so that the injuries are reduced. The deformation of the soil produces lower acceleration and velocity values than those obtained with a rigid soil. On the other hand, as soil plastic deformations increase, the penetration of ROPS into the soil also increases, thus reducing the safety volume of the tractor and increasing the probability of interactions between the operator and the soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.