Abstract
onvolutional Neural Networks (CNN) have been very successful in classification and object recognition. A lot of related work has been done to modify the performance of the networks, but they could either perform better with accuracy at high cost or decrease the time taken by a model on training datasets. We propose a deep neural network model ’Multi-Blocked Model’ which tends to decrease this gap and is efficient and accurate with less convolutional layers, easy to deploy online or embedded systems. We choose three datasets that are publicly available and popular for their own uniqueness among the datasets in deep neural networks. These three diverse datasets are: Modified National Institute of Standards and Technology (MNIST), Street View House Number (SVHN) and the Canadian Institute for Advanced Research with 10 Cases (CIFAR-10). Our stateof-the-art Multi-Blocked model is presented well on all three data sets. Dropout is added to overcome the overfitting problem. The multi-blocked model is designed in a way that it uses a minimum number of parameters so that it is able to run on a Graphical Processing Unit (GPU), which requires less power. The experimental results show that our proposed Multi-Blocked model tends to achieve the accuracy of these datasets by 99.40%, 90.8%, 88.07% consuming under 2 GB of graphical memory.
Highlights
In the modern world, technology has made lives easy and there is a massive success in the pursuit of technology
Our work focuses on image classification in deep neural network/deep learning
This model is suitable for embedded systems because we reduce the complexity and size of Multi-blocked than information
Summary
Technology has made lives easy and there is a massive success in the pursuit of technology. It revolutionized the world and we are trying to make it better. Neural networks have contributed to computer science in a way that has never happened before. They have become backbone in computer science [1]. Almost every field of computer science is using them and enlarging their circle to science fields. Because they are the need for the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mehran University Research Journal of Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.