Abstract

A multi-block multigrid method for the solution of the three-dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell-vertex method which employs central-difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques, and variable-coefficient numerical smoothing results in an efficient and robust scheme. The multi-block strategy places the block loop within the Runge-Kutta loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one- and two-block calculations in which the two-block grid is generated by splitting the one-block grid. Results are presented for both Euler and Navier-Stokes computations of wings and wing-fuselage combinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.