Abstract

ABSTRACTA novel fretting fatigue experimental methodology is presented for mimicking the salient fretting variables for arbitrary axial locations within a complex spline coupling geometry, under combined torque, axial loading and rotating bending moment. The approach permits the simulation, in a simplified test arrangement, of the superimposed multiaxial fretting conditions between the spline teeth. This is achieved via the combination of a low frequency in‐plane cyclic normal clamping load and a higher frequency out‐of‐plane cyclic fatigue stress. The latter is known from spline fatigue tests to play a critical role, along with torque and axial loads, in fretting fatigue cracking of splines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.