Abstract

The quality of K-12 education has been a very big concern for years. Previous methods studied only one or two factors, such as school choice, or teacher quality, on school performance. Therefore the results they provide can be limited. We propose a multi-agent approach to integrate multiple actors in a school system. These actors include teachers, students, supporting staffs and administrators. The interactions among these actors compose a hierarchical school social network. We first detect the hierarchical community structure in this school network by using an agglomerative hierarchical algorithm. Existing agglomerative hierarchical algorithms usually calculate similarity or dissimilarity between two clusters by using some measure of distance between pairs of observations. We, however, develop a method that calculates similarity based on social interactions between interactions is essential in multi-agent systems. Our algorithm is applied to 15 school districts in Bexar County, Texas, and it provides satisfying results on generating the hierarchical structure of all school districts. We then use the detected structure of the social network to evaluate the school system’s organization performance. We design and implement a funding evaluation model to decompose the funding policy task into subtasks and then evaluate these subtasks by using funding distribution policies from past years and looking for possible relationships between student performances and funding policies. Experiments in the 15 school districts in Bexar County show no significant correlation between student performance and the amount of the funding a school district received.

Highlights

  • Social network analysis has been an emerging field in recent years

  • This work contributes to both social network analysis and multi-agent system

  • We propose to model social networks using multi-agent systems where agents frequently interact with each other

Read more

Summary

Introduction

Social network analysis has been an emerging field in recent years. It views social relationships in terms of nodes (agents) and edges (ties). Research has shown that social networks play a critical role in determining the way problems are solved, organizations are run, etc. For a survey on networks, see [2]. A multi-agent system (MAS) is a set of autonomous and interactive entities called agents [3]. Multi-agent system and social network analysis share some similarities (e.g. agents, relationships, etc.). Much research has successfully combined these two together [4] [5]. In multi-agent simulations, when agents communicate with each other or work together on a common goal, agents are often organized into networks

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.