Abstract

This paper proposes a novel framework for home energy management (HEM) based on reinforcement learning in achieving efficient home-based demand response (DR). The concerned hour-ahead energy consumption scheduling problem is duly formulated as a finite Markov decision process (FMDP) with discrete time steps. To tackle this problem, a data-driven method based on neural network (NN) and ${Q}$ -learning algorithm is developed, which achieves superior performance on cost-effective schedules for HEM system. Specifically, real data of electricity price and solar photovoltaic (PV) generation are timely processed for uncertainty prediction by extreme learning machine (ELM) in the rolling time windows. The scheduling decisions of the household appliances and electric vehicles (EVs) can be subsequently obtained through the newly developed framework, of which the objective is dual, i.e., to minimize the electricity bill as well as the DR induced dissatisfaction. Simulations are performed on a residential house level with multiple home appliances, an EV and several PV panels. The test results demonstrate the effectiveness of the proposed data-driven based HEM framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.