Abstract
In an Evolutionary Algorithm (EA) for optimization problems, candidate solutions to the problems are individuals in a population. They produce offsprings by taking evolutionary operators with user-specific control parameters. The challenge is then how to effectively select evolutionary operators and adjust control parameters from generation to generation and on different problems. We propose a novel multiagent evolutionary framework based on trust where each solution is represented as an intelligent agent, and evolutionary operators and control parameters are represented as services. Agents select services in each generation based on trust that measures the competency or suitability of the services for solving particular problems. Multiobjective Optimization Problems (MOPs) are used to showcase the value of our framework. Experimental studies on 35 benchmark MOPs show that our framework significantly improves the performance of the state-of-the-art EAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.