Abstract

Multiactive bridge converters (MAB) have become a widely-researched candidate for the integration of multiple renewable sources, storage, and loads for a variety of applications, from robust smart grids to more-electric aircraft. Connecting multiple dc ports reduces power conversion stress, improves efficiency, reduces material billing, and increases power density. However, the power flows between the ports of an MAB converter are magnetically coupled via the high-frequency (HF) transformer, making it difficult to control. This article presents an MAB converter configuration with a rigid voltage source on the magnetizing inductance of the transformer resulting in inherently decoupled power flows. As a result, the configuration allows independent power flow control tuning of the rest of the ports. The theory behind the power flow decoupling of the proposed MAB configuration is analyzed in detail using a reduced-order model. A 2-kW, 100-kHz Si-C-based four-port MAB converter laboratory prototype is built and tested, showing completely decoupled control loops with fast transient response regardless of their control bandwidths. The proposed configuration therefore makes the operation and design of the MAB family of converters much more feasible for any number of ports and precludes the need for a high-performance dynamic decoupling controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.