Abstract
Topology optimization methods gain extensive attention from many engineering fields for their capacities of meeting the diverse requirements of structural performances and innovative appearances. While most classical topology optimization techniques focus on globally optimal form generation around the whole design domain, there are still many demands for controlling local material proportion. This paper introduces a multi-volume constraint approach and its parameter configuration schemes to help users artificially pre-design the topologically optimized structure with the Bi-directional Evolutionary Structural Optimization (BESO) method. The numerical examples in this paper demonstrate that the presented method can be successfully applied in the computational structural form-finding for several building designs in various projects, e.g., high-rise building façades, circular shell domes, and nest-type stadium structures. It can provide the designers with diverse finely controlled structural layouts based on prescribed local material volume fractions. The structural performances of the diverse designs are very close to that of the globally optimal design. This study aims to make a bridge linking the computational optimization method to the human-centric design requirements, and it holds an enormous application potential in industrial or building designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.