Abstract

This study investigates a multi-visit flexible-docking vehicle routing problem that uses a truck and drone fleet to fulfill pickup and delivery requests in rural areas. In this collaborative truck–drone system, each drone may serve multiple customers per trip (multi-visit services), dock to the same or different truck from where it launched (flexible docking), and perform simultaneous pickup and delivery. These characteristics complicate the temporal, spatial, and loading synchronization for trucks and drones, making the decisions of order allocation and vehicle routing highly interdependent and intractable. This problem is formulated as a mixed-integer linear programming model and solved by a tailored adaptive large neighborhood search metaheuristic. Numerical experiments are conducted on sparse rural networks to demonstrate the efficiency of the proposed method. We observe that the proposed truck–drone system shows an average cost saving of 34% compared to the truck-only case. Moreover, deep insights into the impacts of multi-visit services, flexible docking, and simultaneous pickup and delivery on the performance of the truck–drone system are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.