Abstract

This paper describes a multi-detectable and nano-flow immunosensor based on ZnO nanorods (NRs) grown on the inner surface of PDMS sensor region for sensing H1N1, H5N1, and H7N9 influenza viruses simultaneously using electrochemical method. Nanostructured ZnO NRs with a high isoelectric point (IEP ∼9.5) tend to interact electrostatically with proteins with lower IEP such as H1N1, H5N1, and H7N9 antibodies. ZnO NRs were hydrothermally grown on the upper inner surface of the nano-flow PDMS sensor region. The forementioned three influenza viruses were successfully detected from three separate sensing regions by measuring the oxidation current of 3,3′,5,5′-tetramethylbenzidine (TMB) by horseradish peroxidase (HRP) conjugated on capture antibody of those influenza viruses when proper potential was applied. The proposed immunosensors were evaluated using 1pg/ml, 10pg/ml, 100pg/ml, 1ng/ml, and 10ng/ml of H1N1, H5N1, and H7N9 antigens by amperometry. These immunosensors showed high selectivity toward H1N1, H5N1, and H7N9, which was successfully confirmed by distinguishing the target virus individually from a mixture of three virus antigens. A low limit of detection was demonstrated by detecting as low as 1pg/ml of each virus and it is believed that this was possible by enhancing the sensitivity with the ZnO NRs grown on the PDMS surface in the sensing region. The steady-state oxidation current output linearly increased with respect to the logarithm of the H1N1, H5N1, and H7N9 virus concentrations in the range of 1–10ng/ml.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.