Abstract

With the exponential growth of user-generated content, policies and guidelines are not always enforced in social media, resulting in the prevalence of deviant content violating policies and guidelines. The adverse effects of deviant content are devastating and far-reaching. However, the detection of deviant content from sparse and imbalanced textual data is challenging, as a large number of stakeholders are involved with different stands and the subtle linguistic cues are highly dependent on complex context. To address this problem, we propose a multi-view attention-based deep learning system, which combines random subspace and binary particle swarm optimization (RS-BPSO) to distill content of interest (candidates) from imbalanced data, and applies the context and view attention mechanisms in convolutional neural network (dubbed as SSCNN) for the extraction of structural and semantic features. We evaluate the proposed approach on a large-scale dataset collected from Facebook, and find that RS-BPSO is able to detect whether the content is associated with marijuana with an accuracy of 87.55%, and SSCNN outperforms baselines with an accuracy of 94.50%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.