Abstract

Multi-user searchable encryption (MSE) allows a user to encrypt its files in such a way that these files can be searched by other users that have been authorized by the user. The most immediate application of MSE is to cloud storage, where it enables a user to securely outsource its files to an untrusted cloud storage provider without sacrificing the ability to share and search over it. Any practical MSE scheme should satisfy the following properties: concise indexes, sublinear search time, security of data hiding and trapdoor hiding, and the ability to efficiently authorize or revoke a user to search over a file. Unfortunately, there exists no MSE scheme to achieve all these properties at the same time. This seriously affects the practical value of MSE and prevents it from deploying in a concrete cloud storage system. To resolve this problem, we propose the first MSE scheme to satisfy all the properties outlined above. Our scheme can enable a user to authorize other users to search for a subset of keywords in encrypted form. We use asymmetric bilinear map groups of Type-3 and keyword authorization binary tree (KABtree) to construct this scheme that achieves better performance. We implement our scheme and conduct performance evaluation, demonstrating that our scheme is very efficient and ready to be deployed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call