Abstract

A multi-type preferential attachment tree is introduced, and studied using general multi-type branching processes. For the $p$-type case we derive a framework for studying the tree where a type $i$ vertex generates new type $j$ vertices with rate $w_{ij}(n_1,n_2,\ldots, n_p)$ where $n_k$ is the number of type $k$ vertices previously generated by the type $i$ vertex, and $w_{ij}$ is a non-negative function from $\mathbb{N}^p$ to $\mathbb{R}$. The framework is then used to derive results for trees with more specific attachment rates. In the case with linear preferential attachment---where type $i$ vertices generate new type $j$ vertices with rate $w_{ij}(n_1,n_2,\ldots, n_p)=\gamma_{ij}(n_1+n_2+\dots +n_p)+\beta_{ij}$, where $\gamma_{ij}$ and $\beta_{ij}$ are positive constants---we show that under mild regularity conditions on the parameters $\{\gamma_{ij}\}, \{\beta_{ij}\}$ the asymptotic degree distribution of a vertex is a power law distribution. The asymptotic composition of the vertex population is also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call