Abstract

This paper proposes a novel semi-distributed and practical ICIC scheme based on the Almost Blank SubFrame (ABSF) approach specified by 3GPP. We define two mathematical programming problems for the cases of guaranteed and best-effort traffic, and use game theory to study the properties of the derived ICIC distributed schemes, which are compared in detail against unaffordable centralized schemes. Based on the analysis of the proposed models, we define Distributed Multi-traffic Scheduling (DMS), a unified distributed framework for adaptive interference-aware scheduling of base stations in future cellular networks which accounts for both guaranteed and best-effort traffic. DMS follows a two-tier approach, consisting of local ABSF schedulers, which perform the resource distribution between guaranteed and best effort traffic, and a lightweight local supervisor, which coordinates ABSF local decisions. As a result of such a two-tier design, DMS requires very light signaling to drive the local schedulers to globally efficient operating points. As shown by means of numerical results, DMS allows to (i) maximize radio resources reuse, (ii) provide requested quality for guaranteed traffic, (iii) minimize the time dedicated to guaranteed traffic to leave room for best-effort traffic, and (iv) maximize resource utilization efficiency for best-effort traffic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.