Abstract

Search and rescue missions using rotorcrafts need to be reliable all year long, even in winter conditions. In some cases of deployment prior to take off, the crew may need to manually remove accumulated contaminant from the critical surfaces using tools at their disposal. However, icy contaminant may be hard to remove since the rotorcrafts critical surfaces could be cooler than the environment, thus promoting adhesion. Currently, there exists several passive ice protection materials that could reduce the ice adhesion strength and assist the manual de-icing. The aim of this paper is to propose a detailed comparative procedure to assess the ability of materials to assist the manual de-icing of rotorcrafts. The proposed procedure consists of the characterization of materials using several laboratory tests in order to determine their characteristics pertaining to wettability, their icephobic behavior, and finally their assessment under a multi-tool analysis to evaluate if they can assist. The multi-tool analysis uses different mechanical tools, which are currently used during normal operation, to execute a gradual de-icing procedure, which begins with the softest to the hardest tool using a constant number of passes or strokes, under different types of simulated precipitation. Five different materials were used to evaluate the proposed procedure: Aluminum (used as a reference), two silicone-based coatings (Nusil and SurfEllent), an epoxy-based coating (Wearlon), and finally a commercial ski wax (Swix). All of the tested materials could assist the manual de-icing, within a certain limit, when compared to the bare aluminum. However, SurfEllent was the material that obtained the best overall results. This procedure could be easily adapted to different fields of application and could be used as a development tool for the optimization and the assessment of new materials aimed to reduce ice adhesion.

Highlights

  • Search and rescue missions can be hazardous and dangerous for emergency teams, especially when winter conditions bring about snowy, stormy, or icy precipitation that adheres to emergency vehicles

  • The results presented in this paper are as follows: the characterization results, the icephobic behavior, and the multi-tool analysis (MTA) results

  • The aim of this paper was to propose a detailed comparative procedure to assess the ability of passive ice protection materials in assisting the manual de-icing of a rotorcraft

Read more

Summary

Introduction

Search and rescue missions can be hazardous and dangerous for emergency teams, especially when winter conditions bring about snowy, stormy, or icy precipitation that adheres to emergency vehicles. If a life is in danger, the operation becomes a critical mission; rotorcraft need to be dispatched, takeoff, and land safely in any condition to successfully complete their mission. Ice or wet snow can deposit and adhere quickly on the critical surfaces, and it needs to be removed before an eventual takeoff. This becomes especially limiting when rotorcrafts are deployed to remote locations where de-icing capabilities are limited, and the crew need to rely on primarily manual methods (such as brushes or brooms) to remove snow and ice

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call