Abstract

The recent Lagrangian relaxation towards equilibrium (LaRTE) approach (Fowleret al.,J. Fluid Mech., vol. 934, 2022, A44) is a wall model for large-eddy simulations (LES) that isolates quasi-equilibrium wall-stress dynamics from non-equilibrium responses to time-varying LES inputs. Non-equilibrium physics can then be modelled separately, such as the laminar Stokes layers that form in the viscous region and generate rapid wall-stress responses to fast changes in the pressure gradient. To capture additional wall-stress contributions due to near-wall turbulent eddies, a model term motivated by the attached eddy hypothesis is proposed. The total modelled wall stress thus includes contributions from various processes operating at different time scales (i.e. the LaRTE quasi-equilibrium plus laminar and turbulent non-equilibrium wall stresses) and is called the multi-time-scale (MTS) wall model. It is applied in LES of turbulent channel flow subject to a wide range of unsteady conditions from quasi-equilibrium to non-equilibrium. Flows considered include pulsating and linearly accelerating channel flow for several forcing frequencies and acceleration rates, respectively. We also revisit the sudden spanwise pressure gradient flow (considered in Fowleret al.,J. Fluid Mech., vol. 934, 2022, A44) to review how the newly introduced model features affect this flow. Results obtained with the MTS wall model show good agreement with direct numerical simulation data over a vast range of conditions in these various non-equilibrium channel flows. To further understand the MTS model, we also describe and test the instantaneous-equilibrium limit of the MTS wall model. In this limit, good wall-stress predictions are obtained with reduced model complexity but providing less complete information about the wall-stress physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call