Abstract
Abstract In the postprocessing of ensemble forecasts of weather variables, it is standard practice to first calibrate the forecasts in a univariate setting, before reconstructing multivariate ensembles that have a correct covariability in space, time, and across variables, via so-called “reordering” methods. Within this framework though, postprocessors cannot fully extract the skill of the raw forecast that may exist at larger scales. A multi-temporal-scale modulation mechanism for precipitation is here presented, which aims at improving the forecasts over different accumulation periods, and which can be coupled with any univariate calibration and multivariate reordering techniques. The idea, originally known under the term “canonical events,” has been implemented for more than a decade in the Meteorological Ensemble Forecast Processor (MEFP), a component of the U.S. National Weather Service’s (NWS) Hydrologic Ensemble Forecast Service (HEFS), although users were left with material in the gray literature. This paper proposes a formal description of the mechanism and studies its intrinsic connection with the multivariate reordering process. The verification of modulated and unmodulated forecasts, when coupled with two popular methods for reordering, the Schaake shuffle and ensemble copula coupling (ECC), is performed on 11 Californian basins, on both precipitation and streamflow. Results demonstrate the clear benefit of the multi-temporal-scale modulation, in particular on multiday total streamflow. However, the relative gain depends on the method used for reordering, with more benefits expected when this latter method is not able to reconstruct an adequate temporal structure on the calibrated precipitation forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.