Abstract

Sesamoiditis is a common equine disease with varying severity, leading to increased injury risks and performance degradation in horses. Accurate grading of sesamoiditis is crucial for effective treatment. Although deep learning-based approaches for grading sesamoiditis show promise, they remain underexplored and often lack clinical interpretability. To address this issue, we propose a novel, clinically interpretable multi-task learning model that integrates clinical knowledge with machine learning. The proposed model employs a dual-branch decoder to simultaneously perform sesamoiditis grading and vascular channel segmentation. Feature fusion is utilized to transfer knowledge between these tasks, enabling the identification of subtle radiographic variations. Additionally, our model generates a diagnostic report that, along with the vascular channel mask, serves as an explanation of the model’s grading decisions, thereby increasing the transparency of the decision-making process. We validate our model on two datasets, demonstrating its superior performance compared to state-of-the-art models in terms of accuracy and generalization. This study provides a foundational framework for the interpretable grading of similar diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.