Abstract
Current neural models for Machine Reading Comprehension (MRC) have achieved successful performance in recent years. However, the model is too fragile and lack robustness to tackle the imperceptible adversarial perturbations to the input. In this work, we propose a multi-task learning MRC model with a hierarchical knowledge enrichment to further improve the robustness for noisy document. Our model follows a typical encode-align-decode framework. Additionally, we apply a hierarchical method of adding background knowledge into the model from coarse-to-fine to enhance the language representations. Besides, we optimize our model by jointly training the answer span and unanswerability prediction, aiming to improve the robustness to noise. Experiment results on benchmark datasets confirm the superiority of our method, and our method can achieve competitive performance compared with other strong baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.