Abstract
The RIME optimization algorithm (RIME) represents an advanced optimization technique. However, it suffers from issues such as slow convergence speed and susceptibility to falling into local optima. In response to these shortcomings, we propose a multi-strategy enhanced version known as the multi-strategy improved RIME optimization algorithm (MIRIME). Firstly, the Tent chaotic map is utilized to initialize the population, laying the groundwork for global optimization. Secondly, we introduce an adaptive update strategy based on leadership and the dynamic centroid, facilitating the swarm's exploitation in a more favorable direction. To address the problem of population scarcity in later iterations, the lens imaging opposition-based learning control strategy is introduced to enhance population diversity and ensure convergence accuracy. The proposed centroid boundary control strategy not only limits the search boundaries of individuals but also effectively enhances the algorithm's search focus and efficiency. Finally, to demonstrate the performance of MIRIME, we employ CEC 2017 and CEC 2022 test suites to compare it with 11 popular algorithms across different dimensions, verifying its effectiveness. Additionally, to assess the method's practical feasibility, we apply MIRIME to solve the three-dimensional path planning problem for unmanned surface vehicles. Experimental results indicate that MIRIME outperforms other competing algorithms in terms of solution quality and stability, highlighting its superior application potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.