Abstract

This paper considers a multi-step output feedback robust model predictive control (OFRMPC) approach for the linear parameter varying (LPV) systems with bounded changes of scheduling parameters and bounded disturbance. Less conservative bounds of future estimation error sets and system parametric uncertain sets are predicted by considering bounded changes of scheduling parameters in LPV systems. In the multi-step OFRMPC approach, an optimization problem is solved to obtain a sequence of controller gains, which considers predictions of future bounds of estimation error sets and system parametric uncertain sets. The optimized sequence of controller gains corresponding to a sequence of Lyaponov matrices have less constraint conditions and also introduce more degree of freedom for the optimization. The proposed multi-step OFRMPC guarantees robust uniform ultimately bounded of the estimation error and robust stability of the observer system. A numerical example is given to demonstrate the effectiveness of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call