Abstract
In this paper, a multi-step dimension-reduction approach is proposed for addressing nonlinear relationships within attributes. In this work, the attributes in the data are first organized into groups. In each group, the dimensions are reduced via a parametric mapping that takes into account nonlinear relationships. Mapping parameters are estimated using a low rank singular value decomposition (SVD) of distance covariance. Subsequently, the attributes are reorganized into groups based on the magnitude of their respective singular values. The group-wise organization and the subsequent reduction process is performed for multiple steps until a singular value-based user-defined criterion is satisfied. Simulation analysis is utilized to investigate the performance with five big data-sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.