Abstract

The appearance of new service types and the convergence tendency of the communication networks have endowed the networks more and more P2P (peer to peer) properties. These networks can be more robust and tolerant for a series of non-perfect operational states due to the non-deterministic server–client distributions. Thus a reliability model taking into account of the multi-state and non-deterministic server–client distribution properties is needed for appropriate evaluation of the networks. In this paper, two new performance measures are defined to quantify the overall and local states of the networks. A new time-evolving state-transition Monte Carlo (TEST-MC) simulation model is presented for the reliability analysis of P2P networks in multiple states. The results show that the model is not only valid for estimating the traditional binary-state network reliability parameters, but also adequate for acquiring the parameters in a series of non-perfect operational states, with good efficiencies, especially for highly reliable networks. Furthermore, the model is versatile for the reliability and maintainability analyses in that both the links and the nodes can be failure-prone with arbitrary life distributions, and various maintainability schemes can be applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.