Abstract

Nowadays, skin cancer is considered a serious disorder in which early identification and treatment of the disease are essential to ensure the stability of the patients. Several existing skin cancer detection methods are introduced by employing deep learning (DL) to perform skin disease classification. Convolutional neural networks (CNNs) can classify melanoma skin cancer images. But, it suffers from an overfitting problem. Therefore, to overcome this problem and to classify both benign and malignant tumors efficiently, the multi-stage faster RCNN-based iSPLInception (MFRCNN-iSPLI) method is proposed. Then, the test dataset is used for evaluating the proposed model performance. The faster RCNN is employed directly to perform image classification. This may heavily raise computation time and network complications. So, the iSPLInception model is applied in the multi-stage classification. In this, the iSPLInception model is formulated using the Inception-ResNet design. For candidate box deletion, the prairie dog optimization algorithm is utilized. We have utilized two skin disease datasets, namely, ISIC 2019 Skin lesion image classification and the HAM10000 dataset for conducting experimental results. The methods' accuracy, precision, recall, and F1 score values are calculated, and the results are compared with the existing methods such as CNN, hybrid DL, Inception v3, and VGG19. With 95.82% accuracy, 96.85% precision, 96.52% recall, and 0.95% F1 score values, the output analysis of each measure verified the prediction and classification effectiveness of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call