Abstract

Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern when accessing sensitive data on a remote server. It is known that there exists a logarithmic communication lower bound on any passive ORAM construction, where the server only acts as the storage service. This overhead, however, was shown costly for some applications. Several active ORAM schemes with server computation have been proposed to overcome this limitation. However, they mostly rely on costly homomorphic encryptions, whose performance is worse than passive ORAM. In this article, we propose S 3 ORAM, a new multi-server ORAM framework, which features O (1) client bandwidth blowup and low client storage without relying on costly cryptographic primitives. Our key idea is to harness Shamir Secret Sharing and a multi-party multiplication protocol on applicable binary tree-ORAM paradigms. This strategy allows the client to instruct the server(s) to perform secure and efficient computation on his/her behalf with a low intervention thereby, achieving a constant client bandwidth blowup and low server computational overhead. Our framework can also work atop a general k -ary tree ORAM structure ( k ≥ 2). We fully implemented our framework, and strictly evaluated its performance on a commodity cloud platform (Amazon EC2). Our comprehensive experiments confirmed the efficiency of S 3 ORAM framework, where it is approximately 10× faster than the most efficient passive ORAM (i.e., Path-ORAM) for a moderate network bandwidth while being three orders of magnitude faster than active ORAM with O (1) bandwidth blowup (i.e., Onion-ORAM). We have open-sourced the implementation of our framework for public testing and adaptation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.