Abstract

A multi-scale supervised neural architecture, called Multi-Scale SOON, is proposed for natural texture classification. This architecture recognizes the input textured image through a hierarchical categorization structure in multiple scales. This process consists of three sequential phases: a multi-scale feature extraction, a scale prototype pattern generation, and a multi-scale prototype fusion pattern classification. First phase extracts scale textural features using the Gabor filtering. Then, a hierarchical categorization shapes the classification. First categorization level generates the scale prototypes and an upper level categorizes the prototypes fusion. Three increasing complexity tests over the well-known Brodatz database are performed in order to quantify the Multi-Scale SOON behavior. The comparison to other standout methods proves Multi-Scale SOON behavior to be satisfactory. The tests, including the entire texture album, show the stability and robustness of the Multi-Scale SOON response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.