Abstract

In this paper, a multiscale modeling approach has been developed to simulate the intergranular crack propagation in textured polycrystalline materials. Embedded Atom Method (EAM) and Molecular Dynamics (MD) simulations were carried out to determine the energy and fracture strength of different types of grain boundaries in Ni3Al. Subsequently, the atomistic model has been integrated with the microstructure based model of crack propagation using the Voronoi-Markov Chain-Monte Carlo approach. The model has been utilized to evaluate the crack length for various scenarios and reasonable results are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.