Abstract

A multi-scale model is established to describe the relationship between the macroscopic damage evolution and microscopic cracks behaviors of concrete at elevated temperatures. The evolution equation of the ideal microscopic crack system of concrete at elevated temperatures is deduced for construct the model, which can predict the microscopic crack density and macroscopic damage of concrete at elevated temperatures. The multi-scale model fuses some advantages of the traditional microscopic and macroscopic damage models. Finally, multi-scale damage of a concrete block under high temperature is predicted and compared with the corresponding experimental results, which is utilized to support the ability of the developed model. The results show that the developed multi-scale model can be used to evaluate fire damage of concrete structures in macro-scale as well as explain its physical mechanisms in micro-scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.